Batch Reinforcement Learning for Spoken Dialogue Systems with Sparse Value Function Approximation
نویسنده
چکیده
In this paper, we propose to combine sample-efficient generalization frameworks for RL with a feature selection algorithm for the learning of an optimal spoken dialogue system (SDS) strategy.
منابع مشابه
On-Line Learning of a Persian Spoken Dialogue System Using Real Training Data
The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...
متن کاملOn-Line Learning of a Persian Spoken Dialogue System Using Real Training Data
The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...
متن کاملReward Shaping for Statistical Optimisation of Dialogue Management
This paper investigates the impact of reward shaping on a reinforcement learning-based spoken dialogue system’s learning. A diffuse reward function gives a reward after each transition between two dialogue states. A sparse function only gives a reward at the end of the dialogue. Reward shaping consists of learning a diffuse function without modifying the optimal policy compared to a sparse one....
متن کاملA Learning Automata based Solution for Optimizing Dialogue Strategy in Spoken Dialogue System
Application of reinforcement learning methods in the development of dialogue strategies that support robust and efficient human–computer interaction using spoken language is a growing research area. In spoken dialogue system, Markov Decision Processes (MDPs) provide a formal framework for making dialogue management decisions for planning. This framework enables the system to learn the value of ...
متن کاملOptimizing Spoken Dialogue Management from Data Corpora with Fitted Value Iteration
In recent years machine learning approaches have been proposed for dialogue management optimization in spoken dialogue systems. It is customary to cast the dialogue management problem into a Markov Decision Process (MDP) and to find the associated optimal policy using Reinforcement Learning (RL) algorithms. Yet, the dialogue state space is usually very large (even infinite) and standard RL algo...
متن کامل